https://integral.dirmov.mil.ec/aspirantes/verifica/identidad/0909314239?p=aspirantes%2Fverifica%2Fidentidad%2F0909314239

Query Metrics

15 Database Queries
10 Different statements
132.74 ms Query time
0 Invalid entities

Grouped Statements

Show all queries

Time Count Info
91.12 ms
(68.65%)
3
SELECT t0.id AS id_1, t0.identificacion AS identificacion_2, t0.nombres AS nombres_3, t0.apellido_paterno AS apellido_paterno_4, t0.apellido_materno AS apellido_materno_5, t0.telefono AS telefono_6, t0.telefono_emergencias AS telefono_emergencias_7, t0.email AS email_8, t0.fecha_registro AS fecha_registro_9, t0.fecha_nacimiento AS fecha_nacimiento_10, t0.sexo AS sexo_11, t0.estado_civil AS estado_civil_12, t0.estatura AS estatura_13, t0.edad AS edad_14, t0.lugar_string AS lugar_string_15, t0.edad_string AS edad_string_16, t0.pais_nacimiento AS pais_nacimiento_17, t0.foto_cedula AS foto_cedula_18, t0.localizacion_nacimiento AS localizacion_nacimiento_19, t0.foto AS foto_20, t0.certif_covid AS certif_covid_21 FROM recluta t0 WHERE t0.identificacion = ? LIMIT 1
Parameters:
[
  "0909314239"
]
16.65 ms
(12.54%)
1
INSERT INTO recluta (id, identificacion, nombres, apellido_paterno, apellido_materno, telefono, telefono_emergencias, email, fecha_registro, fecha_nacimiento, sexo, estado_civil, estatura, edad, lugar_string, edad_string, pais_nacimiento, foto_cedula, localizacion_nacimiento, foto, certif_covid) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
Parameters:
[
  190228
  "0909314239"
  "MUÑOZ SANCHEZ ANA ROSA"
  null
  null
  null
  null
  null
  "2024-11-14 08:59:32"
  "1960-11-15 08:59:32"
  "Femenino"
  "CASADO"
  null
  "63"
  "GUAYAS/COLIMES/COLIMES"
  "63 años 10 meses 6 días"
  "ECUATORIANA"
  "/9j/4AAQSkZJRgABAQAAAQABAAD//gAVSlBFRyBFbmNvZGVyIERJR0VSQ//bAIQAAwICAwICAwMDAwQDAwQFCAUFBAQFCgcHBggMCgwMCwoLCw0OEhANDhEOCwsQFhARExQVFRUMDxcYFhQYEhQVFAEDBAQFBAUJBQUJFA0LDRQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQU/8AAEQgA8AC0AwEiAAIRAQMRAf/EAaIAAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKCxAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6AQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgsRAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A6Qb8jeO4xUyxZ5GX68Dgn6f/AKqjSRpHUbcbRnoBx/n1qyrGOJXMZx/CpOTyf/relf0C5n5ekQgK6jIbBOMkjAps8BUjJwDyOhyKs+TsbsU65wMjn3pHiLyrKeP9rPJP4fjxx9aUpDsVcHByMUdQy+/WrZBOQvfA4HI/r+X5msPxhoQ8Q+GNV0pJTbtfWk1oZiu8R+YhXdjIzjOcZ59RTk21otQS11OT074y6XqUekXf2DUotH1e/OnWOqyJF5M0251UbBIZVDNGQC0Y7ZwKS5+Mulx3euCLR9YvdO0S5+y6hqkFupt4GB/eHG8SOI+S+xGwBnoQT59qY1rxT8LdA+Hz+GtWstTm8jTr+6e1c21hFbyLmYysFSTcsQKqjEHJG7OAy+NNFgtLTxVbeHbDxjPqWv3c0E+jrbvFY+e5aM3JnaPCxk4kO2XDgqrAJwvgSxVdRundWT21vZ6JeTtdb623R6KpU27Nde/S+/5+Wlz1bXvHMGmeJIdAttOvtX1d7Rr9rey8pfLgDhA7NLIi8scAAk8HIHGciP4zaJLpHhm8sLTUtVl8Qu8djZWluPOJTiXfuZVUIeGO7HcZUFhy/h7Srr4O+LNRMtlqWt6Zf6NZKl3pti8z+faRCHyfLTdguuHDOVUfdycE1kaH4PhhtNP1rXrXxHoWtX2rX2v2z6NayTyad5pjX7PLsjkzvUK3zRjIVlOOQ2k8VXb7PW6fRXVtdtV+L7JkqjS9V376Pp5P+tT1Sx8cRX+jXd5Do+qve2d6LKfTPIQXSylkAHL7Cu2RJN4fbsOc8Gk8N+PoPFGtazpP9m32mahpHk/aYb3yj/rVLJtMcjg8DJ57j3x5/wCBNKvINL8ceJ9RtPEdguvyw2sUHlNJqiRIPJ+1YXlWzIz7FTCBPkBXaKf8I9N1PRviH4ligXWdQ8O3FtDM2r+IbNobuS5AVVQSOFeVAu/qoCkAADO57hiarlSv9q9/TWz762T7LsTKjBRnbp+el18tTtfCfxFsPGmr63p9rZalY3OkvGsy6jbeQWD7ijKpO4Ahc/Mqn5ulN8V/EnRPCOtaLo17K8upavcR28FrbgM6h22iR8kbU3cZ6nnAODjlfAd6z/Ffxxdvp+q29pq/2H7HcXOl3MMcnlQMJMs8YCYPHzY9s1zHir4beJNGPh6aLUINe1CfxNaXt3qC6TIZ9y79ssxExHkxg7QihFAIwVycp4mv7Dmgru7TfkpWWl+q/wA/VRpUnUtJ20X5foz1TxV42PhZLtn0LVL+0s7T7ZcXlqsIiRBvyMySIWYBCSFBwCvqKkn8YLLb6bc6bo+oa7b6jbm6ilsljRFjwhUuZnjALCQEL1OG44Ncj461O41/xJP4cvLXWLDwxCiNfXNnptzM+p7hn7PG8KMEiAOJGyGb7gwNxrX8XxaXd6DpWmeb4n0KykQXFtceGbGZXiEaBVgkVELRqwlztK/8suxXB0niJLnknordr3vb7vN+uxCpr3U1q/8AL8/QjX4waQvgDTfFcdpqUtnqNyLO1tIrcPcyzF3QIFDFcny3Iy3IHqQK6nwpr1v4outRs57a80bULAxmW0vliDFJASkisJCjKSrj5WJBRgQOM+Q+D/DMuqfCXTdN8VaNr9ra6fqhOm3Gj6c0N9BHGGaO4mjiDmMk+apYq3LKTknzK634c6LqGu/E7X/Ezprz6fb6cNGtJ9ZtwZ7w+YJGlEREfkxqAqrtjUNncfn3ivFq5jieaEE7XUbuy001utfVbJrRNs61haVpPtf566W/XrfyPV7vTIXhR454IkT5XdmByT04Vn5OD0A6GsuSFo1UkoQ2QNrhjx9Dx/Wtu2IjlQWzJGznGyGUqsg4GTmUHPJwOM/y57xD4njklEUUxeONihkklaSNWyeSxAGRkDaSDgeuM92Cr4iVX2XxLdt6NLtbvfzeito0zlrRgo82zGO/mLhTimOm7HOKxh4hZVctEHGN6tkghfVgATt7b13Kfals9Ucxl7r5EOGDHBCbjwCRwR6OOD0OCOfoJNRV5HDCnKo+WCuzSooopkHRIfNVf4eflK9SaliwqDC7eSvHQ9+n9Dj+gqQ3CofmGR6Z6/5/qanilDwly+1hkhvfr/P19azdzdEhzJKiMjFQSfr7Y4/zmpmkSNz8uYhxvBzgDp3/AM+nSoN7rIMKdq9Ae+ScfzqQThtzYAbgKDkg8dvb/EVG4xGmJ+XZ1/iJ545/yfcHrUNyTE/PyOTzuPX1pjzovCOM8HGOnp/X/OazNZ1rTvD+lXGoapf2+nWEA3SXNy+xFz0HqSewAJPpV6RXNLYEnLSO5eD4Leh6D0rJ8R+JNP8ACUME2q3drYCQ8C7u4bc7e7DzHXI6dPWvBPiR+0Ze6lYyW/hKSbQ7Zmw2rXCqLqWMrz5SnIhIO4biS3steBSzxtcOVkEuSzy3Mg3SEk5JZ8EnJ9a+dxWd0qM+SmrnsUMtlUjzT0Pr+5/aC8LrcCKCw1q6GzdvigtwrN6KWnXI6c/j05NDR/2ktNu9VNtc+HdatIcHbMGgkkY/9c94B98PwMnGAcfP+lq9vb7HWKePrFKAAecHDD1weq4yO1aa7wUBkSSN8bPm2sfUA9cj2/UV8/LP8Qp6Wt2PRjltNK1vxPZda/aQsLYRNp/hy9kTgyHU7iK2UD5s4aJpuQQO3TPpis7T/jn4jvoXtjpGiS3qKksmDKvmRkkcJv5ySBu3MP8AZrzKG1cxeWAQzE7SwHy57j3pkdlcxTQThnBgLKrBsMAeGXI7EAceozWTz+v1Y/7Pp9j2U/H2V1slXwpIWlLpKJdREaeYpwVQiMsTjP3wvJAGQc1o2Xxw0xrkLe6PqWmQH5ftD+XOobBzlYyWxwecHHfA5rw+81C7CyTFQ0co3SrglVx/FjOPY+2P7oqpcXFwVtXVWBDiQoSSFI4ZD+Of0raGf173dmS8upPdH1xpusafrIlOn6hZaisMnlStZ3Mcwjf+42wnDexq8oLnEeScEkAdhya+Q9Cmns5ru50rULzSLxmRvMsZjF5iq42o4GA6glflYEHvXovgX40+I/D9zc2+vo2uRK3nC9t1EdxDHtLyL5YUrIMfdB2jnlsDI9qjntKdO8laVvl+B5c8tlGXuao+k7ONNkMayXEflyb3jjTP7wAfLt5O47Scnjg8dQHxwpIwhREmj2bUEQ8xm5Kt8y7SB7naDzw3LVV0vUrPWtAg1XS5VvLW4O+KZR5wlO7Yybv7xbhxgHLbf4CKj1i9hsNOv5WRgcFCqAsWmYsEyvG4lh0O0ADPBbA8dVJYlt029Xbpvf5X37vqk9bmrjGlpMwfFutvcSDTYmujpiK0UrgiQMxUFVKxkHaP1yOcGuO+y3MN7NLL5kTHEahi6M+QuSJAzZ6cKC/Q/LVjU2t5YFWGXy1WZgEktlCgf7rsqjncMt8xIbHANZ0H+jwykLJGz7GDtB5K99odQdu0no4wQecjivvcNh4YWmqdNf8ABfV/M8KpNzlzMsxiKFoYL1vIKthX2KNj7uOF/wBWxwCOSrAE9zV2ztG8/wApFRYsErj7oz97ap7E8Mh6EjmqenWDSbIrlHHlkxjcMuiddj/3lODtI6EAjrgXYQBMY4zIkhOVbGfmHyljk4yMkN68EVy4ipzzUeif9f136nv4Gh7KlKd7Ta0utk9n+vXTo0y7FqsMa7Z82si8bJf5g9x15p/9r2X/AD8p+dWYk8qJE4+VQPlGBTq0VKrb4vw/4J50q2Fu/wB0/wDwL/NN/izXTMuUUfMelW1bYF3KCu0ZBUHjk8flVJZjDyvX1qSObGCxLDGMMe3T+RNdTuznUyw545P70nHqM45GP89agO9nIJ3EnGfeoXfzXzxgEnjOOf8AP61T17xDZeGdEvtX1OQQ2NjC08zKAThQTgDPJJwAPVhUOSpx5pEqLnLliVvFvjHSPBGknUtYuvs0GdkcaKXlmfBISNByzHH0HUkDmvkD4p/EfWfHXiVLvUCbKytwws9I4khiRs/MxwA7kNy+Bg8DGKq+MfHmpfEK+bWtSviJ2Dx2kUQIjtoixPk7RjkHBJ+8TnJIxXDXj3EimOQM6fwn0+h9PavgcyzSWIfs6Taij6nCYNUPekveFu9SNwdiyEAnoeV/Wuv8L6ezhX2gFv4sZBHtXOeG9COpajFA0bEE9Fr6Z+Hvw4uJxE0attAG5GQZK+o56e9fKYis4x1Z7FOm6jsjzSHw1dyMBGpBcDO5sBsDt/hViDwvqdrcHfBKcHdgjv2Ir7N8MfC62niRpbSMcDBYthc9jnNaV98LIY4yZIlnRSTHIoxJGD2I+6w98Z9fWvCljeV2PXWElJXPk0aPc38kdw1pIXf922yMsA4UkduMgdMnk471rJ4HF7Zy/u3MYAEm3/lkGIXkdTtLjJHb0r6IsPhjFZzyGKLdb5y4hi+eMHvxzgnNdb4b8CxQfwebAy7UlBOMdNpAII4JGP8AaP8AsgZSxZccNJux8o2nwxuUu5hNF/o7W294Ah3AN0bB4blJEI6/MCMVgzeBL5XeG4jWORgo2rkF3IUhR06nj86++IfBVorq8EKrE33kBO5Qccjj1Brltb+GMGyNYbdwWYzu2wNlucDpyR6Ed6zhjrS3NJYB9T8/dX0O50eWVEYlxhdy8jGQSP6U7Q9W8nW455o45IVfYPOdgoBGPm2g7l7EYOVLDGSCPpD4hfCFBKpRS0JJySBlj1JPI/TpXifjDwBc6YfMWMNGCSUjXsO/vXqQxcKkORvRnBUwsoO/Y3PAXj2LS/GSS295NbW00z+bbhW2yIBIIs7pGDMHkEucA7wTk5Ner6l4nt/EUkccLbYI5mVfmPYpEQcDrsbHBPQHPPHy+0UcOJnIO4ELHk/r0xW74X+IV54cngijnb7EAY/3rsxhBOSUySAuVBxjAzxivtMhq0aM4uW/e/8AXofLZjQqTTaeh7JAs2p2ls0cIkfyVwj7SDt85d3PXBZSfqOtJb744Uj8sMgLtKqR7A8ZGH9D02MOQMsBj5QAQTTC/cWyYkSRo0MAGyOFujEDg8urdOdpz3retdLt7dFZo1klJDM2OCecceg3ED0GPSv0qUnKL5D5em4RmnU2/rToVLaF1nkWUsJnZUYoxLbQMglh17K2MdQeOp0Y7NYGZi7Slm3ZcLwcYyMAdqlyvlLtwAOAB2pWbdXPSoRp+Z2YnHzxG2ias/w+aWi0vskiZV3DNL5fvUXme1Hme1dR5hrHlVU8jd3piNvHA59K5Xx5bzXtvAIddTShAsl1PaSzmBLqBAN2ZkKyQhSU/eIcLu+ZXBxT/hw+/wAD6QDe/wBpSpF5ct4Lz7WLiRWKySLLubcrMGIyQQCAQpG0YKr+99nbp/l/mdaXLDmOnZttfMn7X/xM+zy2HgmxPJ2ajfyggdc+TEO/QeYf95K+lZLqCxtpri6dYra3jeeWVjgIiKWYnPHQH8q/NfxZ4puvF/jLVPEN+jPNd3BmYHIHzfdQD0C4GPavHznEOlRVNfaPZy2ip1HUkvh/M6HRLC51KKPEy4Y5PA5rodP8Ez3V2kTSbQwGBnP8jXNaHfx+cjyXE0B7RqAwA/MV7B4MJubqJYo8F2ALsPf1r8yxCai5Jn1EYqTszuPhv4BtrIwmGIO+RiTaA5x1Ixz68+xr6f8Ah34aisRFGYoULAMx+8QPfHOPxrifhzoEUJjuHQyTyjCjHIHGcdh2+le6eHtKFlslCoZCOQnB+lfKYirJux9HQoxVjrNP0lPJCQoojA+8i7c1cfS1SEAAFQOCRyat6SAUUNs6dx0/Gugi0oIysGTaTjaDnj+lcfspT2O5TjBWOCm8NiO7SYYD/wB0LhsVcFikUBCKFbrnGMf4119xp4ZSHQ5bgZYfz21m3emSQ7QbcxoOhxx7nOOfpVOnJFRqQclcxIZkDhMNlRyG/i96kewE0nLOR94gMRWklhzho9kgOD6joe496gkVtpGBx781zSoyOjnT2OA8Q+GlvMxlIwzHoec+mevNeNeNvh/HOJEMW07Tj5SQCf0x7V9EanCZ5di5CsvXNcT4i00zDDurMMkcYzSp1JRVjnqRi/esfBXxD8PHR9auIpInjjU7WcDAIK5/DtxXA3N8tvcNEOEJKnAwSOf6GvpT406YtuG85MoWbHAOTjpzXyxrl7bx6o6vGU+bjHGa+9y7ERnGMZKyX9fifIYyg4yk4n0x8FbgXHh2ZeWmhlEJDcEKBkdTngsV+gFehOu7JzjIr5w+DOqyWnjzSlg8zbeRvayxoCVIIDKx7cFR1B+9X0a7ZQLX6rl9f6xQUrHwGLpeyqtdx+AeozxilWQbWB4zUcfK59afuX1r02rHBEcrbRineZ7VA0204x+tJ5/+z+tSWYfjvZe6ro2lxaImsX1wk8uZr1rSGO3TYJVlZQzOjs8KmLaytwWGFrT8Cz21xoDyWsN1bI97etJDelDLHKbqUyqdhK4Em8DBPGOa5T4yXq2Vvp3221gl0WDff3NxLDNvjeGSIosM8br5EzK0uxmOGYKn8RrqvBht28NWbWs9ncwtvYSafMZoSS7FsSEkyNnIaQ4LsGYgEkDng74qa8v8v63O+cb0Yv8ArqZPxlM0nw+1KyjcQi+Ro5JSeBAiNNcZxz/qYZefw78fBkKfarVbVxtgaUt83UsRyfyxX3X8ZpmbwXdW5cJ9oiuYd+QpTdazIxyf9lmH/Aq+B9NlZ5/9aAp5AZCa+Zz340e3lkf3V/M1LJWtLhUdtxX7oxzXv3wcEF3Is0r/ADlwirngnvXz08phuAX+90BFe0/BedZbm1EmGjiHIx94sef0r4up8LPfp25lY+6/h26NbxhY1VRyox2Hb3OQa9a0hGQp8pJ6gDmvJvhyjSQQOQVyuRk4UDtXsWlpm1yxMfbKn5lr4utZy0R9RS+E2bS1urhAEaO14Ug8yfXjjr6A8V1Wm/6Oigu3ckA8HIrP06AgAMcKV5A61txQoq/wsyc9ASPbOM9q6IfCOrqrEzRsxGGbZs5GTjPtWbq1m9zBhV8ubBw/THTBxitBp5AI4jhSflDDsaoz6fDp8nmj5QQXYY2nPbpx+ddLT5XY5YWUtTn9J03UdM0tjeSx3F6WY5j43DPHGBzUV3EZA20guOWYds10s1wqwBiCbZ15fOSPSsbULIlhsIMJ646iuOroehSva7RgXKyqi/IZCzhQETOM/wAR9B6muc12LLdNpGciu3nsRG21Aox1AXNc34iXy48bVBGc8e1ebUWtjc+SPjv5cUTtIcMSVG7jccV8V69dQnVpy7MdjnBJ6V9n/tKKV0qTy2w4O5CG684B/Mj86+INble4uHI4cnlq+ly+zirHzmMdpM9I+EGopD4w027uJNiCcpkjO0vG6Lng4+ZhzX1dbyB09MdjXxT4E1j+wnXU/JFyluRJ5Dn/AFuDkjp6A19lWlx5lrbzBmIlhRxuOeGUEV+sZHUTpOC6M/Pc1i1NSZodVB9aaxC/dGD61h+NNQuNJ8Ha7fWknlXVtYTzRPgHa6xsVODwcEDrXnHhnxb4j+KkdlD4f8VQ6XFp+l2z6nc/2cssst7JuDJtcBdo8snK4GW/iH3fbq4mNKap2bk9kra/e0eXChKpFzvZL1PaWkVe9J5q+tcr8NfEN74m8CaLqeowPBez24MvmDBkIJXzMYAAcAPgDGGGMjmul8z2ropzVSCnHZq5nKLhJxfQzvF/je28HfZDcade3kE+/NxB5SQW+3b/AK2WWRETcWAXJ5IwOcCtXwzrX9v6HYaqIfIjvYluIoy24iN/mTdxwxUqSBkAkgFgOeY+JWv3PhvShe2F09veIrmKCaFDZTN8oAuJX2iIDPynzUyTwJCAhu+CzCvhPS4beXSXMithtBj22QbcxfywCeAcgnucnAzgR7WX1hwvpbbTyOuSSpKVupk/HUTR/DfV7y3LfaLGN7hVU4O1opIXYf7qTO30U18HWqmLVGhLEFTkKBnNfoH8TIgvwz8VrHCkijSrl2jkyQ+ImJz+IB/Cvz7luCmqzy8BiBhz/DxXymeS/ewPdyzWnJeZbuI3S5yYii55Ne5/Aqw/tXVLazRCxJ8x8enb+teFb3nkj3M+31JHzflX17+y54UeCyXVJIsC4bZHuXqo/wA/pXw+JnyQbkfS4eDm7o+u/AVmtrbWwY7jgYwMk/8A1q7G7+I2kaci28YuJpgeXSAlV7Y5wTXllik2v3qWi3MkNlGF8yOEEM/plgenB44r0PQPhHpPiaMW15bGWKYBD5ijdJ7Fs5NfOKmpS1PoOa0Sa5+MnhWxkcXPiCysZFHzJNcLvXjPKnn17Vs6X8V7fVJN2l6ilwqk5RcZOPw4OeuKwNf/AGUfA9tagwaPBafKCJISQ+MjnIIOciuam+E0WlSrJps6/uGyFZjuXHcAHiuhpR2JjU5lc9x0TxK2pxSj7Sss4T9wJDgA+hP4fpXQjVYJJUDGNweH3N9046hcZPNfP/hW+lsL6O3d5ZZFZkcOMZyfXPHXFen311Itlvb93lflY46/1+o/Gk6ytdspx50mTa348s4Q20qiBtoAIwnHQ47ZzXAaz+0N4P0pV+163ZWkZ+758qxNITwoXeRnORz0571xviC0n1y5eyiZpUdyDEMcj09Op9OnFQWvwP0XW592tLbXJxtczrkBfYDj6ZzWMZq12Nvl906W1+POla7cxf2XcW86MMjncJD7EcYrUk8fWt6jRamps3kB2y7SyDjHIAyPryPpV/w9+zp4O0tFvtM0qxWUEhprVRxxjnjdnpwx7cYzS614TTS7Xyo8vhdrLNEHyv0P+FZVlBKzCnVcnZM+ffj54cXVvDV0UUyOYt0b5ySMHnp7V+eWtIbPUZVZcZYg81+mOv2MO2WxitwsEikBFXGwnPBH1NfBvx98K/8ACNa+7qihWO4d+pNaYCooVFB7GGMpupBtHN+Gdt0IwzBATgAIWJ/AAmvpf4LG5PhKaG63MLa9kji3SFwEIVlC55C4YYUnjJ6DFfKei6g/7oqVkbcCYmiDLsHVSD2NfW/whi+z+BbV0iigSWeVgkTbtu0hCpPqCpGOwAr9TyJpTaS6HwOa/wAO/c7DUbz+ztPurvyJrryIml8i2TfLJtBO1F7scYA7muBt/jXBd28VxB4N8XzQSqHjlj0sMrqRkEEPggjvXe3F/BaW8s88qQwRKXklkYKqqBkkk8AAd6800fxj4kXTIG0D4bImiunnWezVLe3DRP8AMreWBhCQckc4JPWvqa9SUZJKVvSLk/wTPnqMFJO8b+rt+Z1fwv8AFV3418C6ZrV9HDFdXPm70t1IQbZXQYBJPRR3rqa5/wAH3mlah4Z0660SCG20yeISwwQIiLHuOWUqnyhtxIYDo2a2K6qN/ZRu7uy17+ZjUtzysra7FTxhpfiC/FrLoWsf2d5G/wA612Rj7Tnbt/evHL5e3DHiNt2ccdQeE4NS/wCEf0e41SGePVYoSLxJ5Fkcyt/rGBVmXaWyVUHAUgALjaIfEEusHX9Mi0y7hii+yXM8ltMU23Dq8ARW4MgXDv8AOg+VihYMMI17wxqd9q2k/ab+zfTrk3Fwn2aRdrKizOsecMQSUVTkEg5yOCKzjb2zet/w6bf0ups4v2a2/XqZPj3W5bPwZ4gnhgdilq1u7SxsiKspCHAYAseRxjt1HWvz/wBQuI59UndV8qEMVUY6DJr7u+Ld3K3hC/t0JRHltMndgn/SogfwwSPfd7V8d3+k2Vvr135aJLC1zIytj7qFjjHvivk88nacD6HKneD9RPB2gSeINasrNFOZpUTd06sB0r9JfBfguDwzpFlaQoFCW47d+9fFnwC0cat8V9CWIB7OCUzTEY/hRsdfft3r9DktBeIRtH3cKF9Mdq/PsfN3SZ9hhFdXOI1f4weC/h3p88+s6/YQNbZWSzW4D3LvjO3yVy2cYwK8s1v9qn4oeJtB1bUPAuhjw9oelwtNd6hLGJrgx4BwgIKg7SWK7JAAOcEYr0e9+AOi6v4iudXvrCwGqNGUju47eMzr6EuQcnHfr6YrK0X4T/FPwDqFz/wiPifSZdN58vT9f0ov8pUBkMsbElTg9FP3uR3riw7pzd5I66kpxjoeHaN8XviJ8Tdb0PSz4h17WdYv5HEoa/vNNiQdVZJYLllYbNzMfIjVcrjOcj2j4beNPFnhrWptB8RX2p3U1vndbaqheWLJ2lo5uk6cgFgXPTJ7Cx4b+F3xj0bV520Pw98M/A11dgC41XQ4CLifcPmCBoFODxhWZRlSST0r0vR/hn4jjjtj4l8QXGtXYCmDcggEbZJdwv8ACGYt8oOMDBziu+tCHJZJI5qMm53bfyJfBviA3/iq6t5QpzGlxGxwOCSp4znqpP4mvbdd0W4/4RyC4ikYLGpaaKVQd3AxjA46fjXkHh+3/tLxe2pCNhFgW6yHjKKAN2CeCeufcV7dILqTwwsbvtUAHY3YehP5V8/OrvGx7FODkk0fNGneIp7E6pdJbGWWSeURlBztU4yTwAMAmvB/F3g/xV8R7jVNXj8Kf8JibNZ5of7TtD9jjCb/AN1AXjYXMvyhW2k/MG+ZRhR9R6ToItZtV0+4i2wXUj3AgdiAwb76ZHqM9P0zVXxJ4C8T2MVpfeBtWWC6wUFtrP2i6hZscANHIhQADBwGJ3DhulduESmk2ctdxjzcx+fWkeLdav7vQ4dJu401C8m2GLTvDdrZiJmkUQC1uIZTO5ZWJJIQqRtG/JI94t/j/wDEX4F68NB8YW83ijSYz5chilaaVYxyJYJXJZj/AHopmLf3W9emh8I+P/DPjE+ILPwB4AtdWKlpNbtIlimnJ3byg+zRPG7A4yxPTndmpNL+E2v+NfEqa78QdYgvLi2j32+n2FsUtYpCSWk8zAMpwSBleOuTXVXdO1pRWhx0nNP3ZHX6B8RPDPxNd77w5JeSxgh5hdWcsGMrnGXUBiMc7cgZ6187/tieFHg0PT9X8s+W0rQuQOAxBYfyr6a8G+A/7DvJZYtyQspKJJkFPUY7D8PWuM/aX8Pprvws1yJ0T9xH9oU4LEbDuJHGc4B7V48HFVIuPQ9GSbi7vU/P7wLaTXuoo2VBTJjjXkkjufYV9cfCqOWDwja+a5mEjySKWAAwWzjgY9T+Jr5X+Hmh3Fx43gsbeZIZ52Iic/dIIz+WDX2DpqrZ28Fv8qpEgQBVwOnJx2r9fyRqV59bH5vmqcVys0rmCK5gkgniSeCVCkkUihldSMEEHggjtXknhmy1bWLeay8LfE9JdO01xZpANJhkaFFGEBc43jAwHAw2CR3r0zWNPi1vR7zTJy6QXkD28jRkBgrqVJGQRnB9K4+DwJfweH9CltprbT/Fej2iWsdzEzSQXCIAPKl+VS0b4B6ZRjlTkfN9JXhKc00tEujafpo1667+W54lNqEWm9+6TX4p/h+J0nw/m0j/AIQ3S18Ot9o0eOLyoJinlmTaSrMwKr8xYMScDJJPeug81/8Ann/49XJfDDwzdeDvA+m6PeyQy3Nt5u94GJQ7pXcYJAPRh2rqa6qEX7KHMrOy07abHPVt7SXK7q7OT+MFm8mj3F+iagoj068t55rSOCWOO3kVDKZEkkjZjhAV2NkFecj5TreEFl0/w4sd08n2iS4uZ5Q9sYSskk7yOuzc2AGcgEMwIAIJBBrJ+IiWt1d6dHq0v2bw60VxHezG6mgQswQJG5jkRQrfP80gYcBRguMv8J6tFq2hLNBO91bie4himkmExeOOZ0Vt+PmBCjBOTjGWY5Y8EXbEykt7f5dPuO+SfsUvMrfE67KeANf2IZp3tW2AdQw5BHuMZ/Cvjy3l+16dc3CHDpLgk84B6frX2F4tJutNuYBhS6dwG7gnj6ZH418t6b4e+ya1rWhS7ROZZbUAEffUnaQM9flzj3r5jOoudpI9rKpKKaZ6T+zZstPGFlOZAgbzAo45JUjuPQmv0I8LXRcQAfvTIMZx0AHJP5V+c3wV83TNR09mY7nk2YJ6ckGvuvwL4hR7ABiwKL39f8ivgcwalZrsfaYPd+p6t/YhElxcLMZVkYFFAyYxgArx2zz+NI+pW1qUSabyS7YGeBnHNRaJ4iieNQ7NggAkHFb95b2OowEBi8hwxQJnp74wB7mvAUpLqezyROVk8Y2ujTSvZorNnIMihlU4IyB68/pT7W+1C9gup7ucmS4UgkDkA9evIOMD6E+tdKPC8ELswUBM5znopxWb4x046Vo8TRyGJ0cZZVycY6fyrfnqPzEqdOJz2nt9ln8qFtijjK9ceg969khfbpZjZlG9R1OOccn+VePeGCJtQk8xCyqMqG/i9q9jSOSfQd6ooA4bvkcAZxz1qOSUrmykopJnm87LJqG4OyurbxIvVfoao6tf3mmkNGC1vc/fiQtwRjJ4I4Oc8c03XZprHVvMO0bly2w9fb/PrXVaVpxv7Lf5e9SpySBxkcHn61nTc6askFanFyOVXxPpl0B5kYt2IB3BsLnuetQxk3twuy2KW7HiR05b0xiuwn8G2MkrMsPBwRJHwFPoeeaYkEOgj/SYTvBIEiLkY7Z9PxpzqytY5o04t3Kkukxx27MEHmKuTkA/hXiXxuTzfC+sR/wSW0kXPTBGDkd69Z1bxN9obZESVHBYqVya8U+M+pRyeHLyIt8sqlH385BI/wAamk7yHOCSuj5O+FngKR/GK6tN+7ttNBuHwoJIHyqnXuzL+ANexRzOfn5JJJOKxtMgTSNBRItokvAHdzyAq5x9ORU1tc/J82fwOK/YeHqc4Yd1Jfa2PzfPJQdSNKHTV+p0CXCthq5vxFo99qvxB8F6nbw+ZZaf9t+0y71Hl+ZEFTgnJyR2B96tX93fJpV7Jp8aT36wO1vFIcK8gU7VPI4JwOo+tea6Yvg280a31fXfEE0HiiO2YXN3LqckN7ay/N5iJEGGzaxcKgTBHZs8/SYmqtINdnq7bNPs/wCuqPAp03rJea2vurHuPme1Hme1c74BvNY1Dwfpdxr8H2fVnizOmwIep2kqPusV2kjjBJGB0HQV6EZKcVJdThlHlk49jjPiHdalHYibTRfLqCIwhurZ2aKBjgZlhUOZQewET45OU++Leg3Ux0Wza4vLm+mKkPc3VqbaSRgTkmIqu0Z6DHTHJ6nI8e20N9JZltdudJmiWV1SOaRIXQAF3mEbo21AOG3qAWAJO4As8Gu0XhTTlmkiknSPbM8LMd8gJDs25VbeWyWDAEMWByQTXjubVd9rd/Tp/nr8j07J0katy5kuA5OFGQe/Brxr4maDFpuuRataySR3OELxuc/OjbY5Fb1Ma7TnqVz3xXsN1KqLt2mRtuTt6KPc1474yupdfsdS1RkKWsKhII1480+Yi5J7nDHAArzceozouK3O/Bpwqc19DG8B6gyeKtOslRk8sgnHqNrA/iMmvsjwBehZNpb5SfzPFfG2kWzWsfh7XIJDI8l2tjPuHJdGKYA90aMj619bfDu685bZlb5TgH15Ffm+LV4o+6w2nMe9aIsbRr5irsHbFegWFxBDDGqen515hpFyQnIKfKOT6etdLb3xSNclnYLn6j+VeG1Y9um7q52C3rHd5bKoHykgFj7fX8K4zxv4ltLS4tLa6fCozyybnDKzA/KMenOaS71pbdwy4DMcbCvOew64rOvfDVh4i05YpJpYbhJPPW5jbDiT15yCPY8Vad48pte7SOc8F/GTwt4r1W8i8O61b3l1bvmZI/8AWRHOMEHnB9cEe9ez2ni9JNEa1JCwsOUIBHXvgCvnPxz8F5vEV1Be2U8Fn4rtRus9Xtogkxxj5ZB0kUjgq2Qe2DzWRY+NPiBZY0i/8J6i2tJ+7xaw7reY9A6ydAp689Oa1j+7ViJR5nc9i8T+O9D0jV7VNQvre18x/KRJZAm9m/hGepPYDmus8E+KIks7y1tlN6qOHgAkC5B52d/U9f6V8/eH/gNqutal/bni+O01DXZD+6F5GXgslPQRoRwRxlvvEjOcYFe2aR4StfDekxWFpI6qqFzcH7/m9c4Ax17enFc6Spybvv0LmozSR3RvzGiug2SNwUIyEJxnPNUtT1e3kjMc0ZVFz8x9/rXHReKZ4fMimeNZ0Ygkpjd78n9feorzUFuh5YLjIyxzlV+vfmuar0EGrGAh2QAkdNxx/Svnz4w3v2mLymbHy856DmvatVm8uPYDkDg+9fPfxlvmsrK4laMyMEJVAcZPQDPucD8adH4jCtscRpdwbjTbKQrtxCqgc+nv9a0FLKuemarLZrp7mBHLeSfKz244pY5CwbC549a/d8DBQw0Irsfk+Om54ibfctvLJDau6I87KpYRR4DOcdBkgZPTkge9cXB8SNMv7y11dPA3iC6uRH+4vl0lXcIQcbH3ZwQx6HHzH1rr4ZMqox1rLk8QW/hjW/DugWWmxQW+o/aNvkERpD5a7zhAuDkk+nrzXXW5lZ81l6X1ukjihZ3Vrv8ATqaHw68V3Xi/wZp+r3qxRXNx5m9IFIQbZGUYBJPRR3rpPO/2v0qlp1ra6dZx29naw2dsmdkMCBEXJycADA5JP41Y8z2rrpxlGEYyd2lqzjmoyk3HRHKeJZNFmv7G11Qfv5twhHzhXXKBkdl42MWjBRztclRgnAqTSoLW2sZY7Sbz4jcTyM24Nh3ldnXI9GLDHUYweaoeLJQdXsbWHSYtTvbm3uEP2mfyoY7f935u/ht25vKGNp78gZzX8MT2cGgokCXUEPn3RZb1xJLGwmkMu5gTkBg3OScYySa8hzvVasv6t956SheC1/rUTxLfOGuLSHIuJLKSVlY5VVTufTd8yj3rl9Yjhj8KZRs28hhkDqu7bvKAHA75f/x2txJXNrNcyFLa8v8ALyjAYxIAdkJycblDDI7NuPcVxmo6+dG0pbFnhvIEUxJZyR4ZscfdBIIAC4yOo74rzsVOKvd6HpUKT0stijPqGn6Bot9qEKMJ7XxPZXDI75Zbc2zZKrnBy4b5u+wDvXuXwI8W2viKzcWshaNSTGxUqSAevP418q67cTWfhm6vwzRyXFwkaEf7Cnp+Mg/75rqf2ZPG11pniacXM7SRKFdi/PyFtrfluB+imvh8SoSjotT6qhLl90/RXR5kktEUnGOo/wDr1rPc/ZlAZuv3QB1rz3TNaW1s1kIMsYxkp/d9fwrudOmjvoVdcZwCMnrXztRWse7GRSW8Se8M0z4jX7oLYrWttbhgkWRZMxpkkrzkYrzXxXqlzpd9MkMEt0r5KxLglj6DoO1eczfFbx1o87xL4Kc8ttLXkZI9OMj9Mj3qIySV2dFOFSq7Uz6qg1AXVzDtCjcevQ4+tdbDbPlXljALL8snof6V8Kah8TvijdSrtsYdOgYZ+eX5x/3znH1NdHpnjX43pYSrBfXdzZ3EbKjwvbOsfHO0zRqUPHVeetWqrlLlUTrWV1aqvKaXrf8AQ+v9TjWK4wOpUEn1/wA81z2pa+lkpUswAbo3T3FfKV/4g+Kuko00mo3byOu1jdXSkufUkJj8jjAFLofjr4teIZhbJYaPcov32u5iVyOOWRf54rnlNSnZ6HRLL6lGnzRkmvmj3rW9Ut7qRZIJFWVfvbSOPr+VS201zd7SGYIvOOgP415fpNr4jE8UWrR20csn/LS1lZ0br/eUEfTmvTbq/wDsVrCgOHChfyFNrmSZ5Ep3dht/O0aOGOCe1eHfEm9tLjxbpVneOq20l1Ck5cqu1GYLncxAXBIOT6V6tNeG5DSFiFUnaM8V4V4uvDJ4xfUI5XLw5WIHBVeMZAxjPXmvSyzBTxFfkSPPxmJhQpObZBcKqzyBWL/MRu24z/nj9PWmVX8wyIpYEY457+9WK/a6StTUex+X1XebZFPOltDJNLKsMMal3kcgKqgZJJPQCuN8W+LfDtjqPhrXJpL29u4oZrm0tbBAzNDJF80rq2CFCjPUdDwcHHYX1nDqNlcWlwnmW88bRSJkjcrDBGRyOD2rz7SPBnjTQ9RtLm0n0G6ktLM6dDPdeeryW4cMgdV4BGMcepyW4NY4mVTSMI3Xpe1muhdJQ3k/06Hqmm3sOpafbXds/mW9xGssb4I3KwBBweRwe9Wa53wDpljoXhHTrHTr5NTtIVYLdxsrLIxcliNuRjcWGMnGMZOM10Hme1elTk5QTlu0cUqcFJpbHlvxQ8RJbhrS+e0t4lmjksjcQSeZI4AIaORZU2FWBBfcMbwGCjDSN8OaffX2jWT3LwrujWXyYJWePc3zH58/OWLbieSSclm6nW8X6lbW91p8TXF7ZztvZZbCUNIqgDcvkc+Zkdwj7OThetcNJ4v8vSpbeygubi6jll3hS9vjMrbWkwU2u4w5HGSxOBmvlp1VTqynNnuUqXNTUYHTa3fzWdndSWiI00US7TcZIDFgDlQRkD0GM+teN311eSyyS3M6y3DDAwMbuTVjV/EGrSS3EWpXaTMhB8pRkRuexbGSRjHJPT1zWD4WgudT19IN3yyyBQT/AAjqT+ABP4V4WMrKrK0XoezQoumrsm8aXTx+G9LsmcIxUyMpI6nPP4/0ql8ItUXS/H+l+Y2IrlmtnBPB3qQP/HttaPjS9g1xbqe2jT5X2KwXAVF4UfkAfxrg7Cea1v7e4gOJYnDr9QQR/KvIrRblqddLRWP0K+HniCSSyaxmbM9v8pz/ABKBwT/n1rv9D8Qyw3Xkk/IG6MOB9K+dNE8Qvaiz1ONS2ABLt7qfb6k163pmpw3dvBepMpR+S4III/DuPSvnKu9j6OOqueordQ380k8QMjqxVnkYn3Kj0FXokXzFXYjE8gbfSuHsNZFjHG0O1onOWUHP412WmaikjK33lcdK52rmik4u6Ls+j/bIhGIkfd1QiuS1D4dfaiZZIrlELH/UOYh+G3Br0FLmFIfNEa5BxvbBB9a1tN1hJYzJJHgup2bASB3yaFTUtzohUqQd4yPJo/A9hZhvtUcl1HgfLKx+b65HPHFdHaywabZwxpGltGWwi4wF6egrq7vy53f5VwTkk8YPpWRqyQJG25cN6VhUSi7I0qVJyVpSb+ZjajGsykowXdwPXOOx7VgandzNeIHdumNm7irtxeI9wPmKxpy3OAKyftaTzPNIQEHAYn+VaRdoo45O8mQa9rX9l6RPKx6CvHo52unllbrIc5re+J3iTzbcorFYt/lpu/iJH/6q4nSbgSMQx+UgAD1r9D4aocsZVXuz5DO53Uaa+ZtKNpz1qRH254zUart70tffpWPjCPUIft9nPb+bLb+bG0fmwttdMjG5T2I6g1x+k/Di9Wxt/wC0fFXiCK92/vRaaozR7vVSyA4PXB6Zxk4ye0yB1OKkh4JPpUTpQqNOSNI1JQVomb8PPDdz4W8H6fpd3JFJcQeZuaEkod0jMOSAejDtXR+X71FF9wU6t4QVOChHZaGUpOcnJ9TyL4vRyXd1FYx6RDqFzfTeXHcnaXtehygbAbIWQ7cgHbzwcVj6Xm28MS6XaQxpb2ETrc3Ji2FnVmJUAFtzZ6kZBJ4OMAdT8TbqLSjpesyBt0Fw24D7rK0bKFPH1x715+njfT/+EYWxFteSGWM5uMRxo8h5lbJYFsndxjNfI4hxjWlKT1PpKF/ZJRRyQj3Qzyj5suS67cc59abO6+H9NZLecNrV4CpRWH+jwkfzb86d/a1zOrW9okcSMxch+uck5/WsLU7cabfNcXchlZxlXQ9Gr5573PRI5NMvxbOZZZhAeZFJ4NY1qpS9TY4gYsBub+H3P0q/ba/cRzvvkeaJ8ghjmqKgSzttywySVNQ7XTXQ2SkviPq/T40Ok6ZMssZs76NYxIDwJgoyMHnDDDD8R1p9pdajpFw9vETt/wCeLdD9PeuQ+C3xHt9T0dPCGuRTPaSPiC4gTzZrdsFtyqMlgApOACfQV7Hd+DLsXEOm3Xlm7ZBLY3qPmO9jP3SrHuRg4Pr9a+axNKVObZ7+HrRcEjEsPEepWeBAJAoOfKc5GfavSvBfxE85FinLRzAcgiuCHm6a5gvrcrInG4in3VhHfr51sfLlXkFTtJricmtXseg4xn0PfbTxHbkNskbMh3EFsgH29KtJ4gMa/LIwQfwZwK+erC71SEbUkI7H3rQ/tPUHAR7wofZjS54jjSn1Pc7jxY3mKzyGNNuNmfas/XPF0U0W7dhFGfmxzXj7ajdyZQSlj71NbxT37Dz5WZF5I7Uc8Oo+V9Wa2o+Jrm/LLBvWHPJU9RTFvbu6jWAFkQ1LbohZYo0B7c10GiaBPqN6LO2y8nWaRRxGPr2NUqjWxhJR7HkHxXsZoNR0F0jSZBDJMqOgPzbhk7s8enTmue8OSCbULpbpJo7g42Q7ypVfXKnnt+Ve5fE7wno3iDV7HQtUTy3ja3hS7E5jSJbiTyI5SysrYS5Nsj8/cu8npXnF74JvPC8Vu39mJa2MCySs9tEBGFBKM5CrwqkAOx5UkBsZXP6XkM4ywsdbHxGbc3tnzEiuFQZ6nvR5gHXimu5OCoDAjIIbINLX1p8zKNxKkRi5wTVdm3VJFKR15xVxdjAu0VBRXTzDOB+PUdqNY0vQrmDToNkTSqlnd2mLUmQA+a0eoXbghBw08qkbsKgy1eR69oc1laxQwwwTxFf3VzFGjbc84aRB85Hrk9evWvaPi7NbXstu+nPBe6pbbrqK50nxLaaoLNMlSv8AxL9Pt4kZgm9fnJUICQCVz43qGopfC4u7u/k8xjuaSWRnkZvUsSc/jX5tWcnLmlv+B9pGKUdOhy6WrwGYSK9pDGCZGzl5B/SueuFmuwzb2ZMnAz2rop9XsVWVCHnVo2Xk5OSOv/1qpLYStpiz/Zj5CN95zgZ9MVyTu46s1Tb3RgU/zMEEDBHeiQDOQMZqVLdprZZFBKjO7HauVXi2kzSRuaJqMVk9tJBLLb3AcEyrLhwQQcqR908V+gnwq8ZaP8VPAun+Hb2yEH2SMhJY4CxWNcL+7YdCvClT2AI56fnnp9k7SAQxjDgEOOa+ivghqj6dqelSwztHeR3KqsYJCvlWDg49VJ59h6Vli4KUFJ7o3oS5ZH0Z4o8K3Xh6QWWvILm0kOyz1YY2zeiyejdu3SuZtvDKxbhAygA4yTXvNjPbataNYahGLiGZMGKX5gcj1rzTW/Ber+Br959PhbU9KY/u4Gb99H3wp7j0Bx9TXzNSMWm4ntwk1scfJ4T1GSN2hTcRz6HFZEmhX+nyOZ4HBPGSpr2jRPEdzKqrLpdzGccLIIsk+gw5rZvtXu54T5GmqOcA3EigD8BmudQT2Z1qvUXQ8Ds9Ju5WBELbeu4gjH510EOihAkXIZugUZJPpjvXow0fV9YYpELW33HBkVPMVR64IUZ/Ou88K+D9O0BXkuVE92Rh5HbczcDuMYHsoFChcJ1dNNzzXQPhVd3rqZ2ltYhyUBKuR/tMBkfRefcV6lpekWPhrTTbWcKxkjBI6k960bi+VyFRRGAegGBVLVroRWbyA4wCM/Wtm0o8qRguaSvI8n8SaFaeJdRvI7uQwxzLJps1wuB5cc67C+SD/q3MM4/2rdT2o8Parc+LNOglvnks5NckivDNYfLcabqzTNaXDwP03DUImO1htcanGrjy91atvpDav4a1IN8kl4Z2O5M4BDAce2AfwrlvCWmv4vs7vSklFvJqPjTxD4ct5YztEMt/pSX0bA44K39rE6kAYxX0+TVnyyh0X5M8LM6avGXc5PXvAkk11cXuiWaAwzw22q6VaJ+6SaZN9rfWg6CzvU5RTgRSlo8gFVXk7lWguZbaVWiuITiSFxtdPTIPI/r2zXr1t4k0vVrnQ/FGrReToHiCzsbTxBDCCmdI1lnUspB+VrLV4bgxsOUSZQOgFOs4IvFGp3Hg3xaui3njDSLiXSrrTm1Rvt880R2CaIui3CiZBHKFjN1uWRR5lsOK+5wmN5f3cz5WvhuZucX6njKtuqSMjOCcZruNa+Et3FqjWmg3L6nM8Zli0i8TytTZFJEnkwqCtyqkEZtnmVcNvdSK4g280EjQXMf2eaMlWiY/MCPvA+4PBAzg17dOpGorxZ40oOJZVtoxS+Z7UittGKXzPau4yucR8Yrq7k+IHiS3168jfVIPLuJE1jXYlu4kSJo1iaHTwLaOZRDzF1UOvJ3GvCdS8FX2pi+vLL7RdQW675WggkmC56eYyrtT8TX0h8bbi+ktbXT7WfV303QytxdaLH4Eh0BNJtmT5J7dWJlkjfy22mU7jglypya43S7axvrU6TfDSdRcXZlittY8TzafcKWXLYSM/Z4twDE5+fOQcAAV+buF4rU+0Vnsj53XStkh+0sYUXrxg/T61ev8fYYra3JBI3kE87e3NaOsmx1i/vRbpcJbswaFLmYSyDI4BdQA/PRscjHWsbSLWW+1EWzDaU4IPUDOKwUbS5ZItSaTbGXujyw2C3Oc7s/NiqumXItrgRg7lY4x0rtPF4tNOiht4G891UbhkZA9TjgZ9OTXHWlp5u+SQqqAZAx1qJRak7FxldXkzubHTLaOxleaUxTIQMDByT/+uu7+FUjNq261LSyFNqIAWDM3AzgZ6mvD31aWJRKjZAwNjEkEe9el/CzxPJ4L8c6ReXvk3OlNOrXTiN/3CEhfNwN33SQcY54A5IrkxK9xpdjpw65Zan6OeHSPs0KXKiRgozhcYPt6V0d5G7x+XFiS3bqknr9fWvBJvjHN4X1j4jDU4YP7P8MQ2b2qxK6vM80RIR2+YDMmxQQuADk5xmu70Kf4n+IfCjarJJ4b0S5uUM9jpdxp91M6KyBkjnlMsZVwTtfbGQMZAOdo+Vs0rs91ST0R1B0MxOc2fnLzgZG4fTHWrH9kjbtjhbfjB3KTj6V5Nqnxc1SD4neK/D8vinw14Xs9INp9mk1iEtJc+bCJH5NzGPlPoOjDPvr+IPiF4ys/H0nheyv/AA7a/ZfDB1yfUNUtZfJaVZTGwJEw8qI4DZO8qAfvUlBopS7HqVnp0tnGo8olh/ebGK0Vs5yuV2qfrXjMPx61W7+CXhjxZbaMl14k8QXa6RY6bHKFtmvWkkjVnZiCIyYmbGc8hS3Vx6Lo9r48gudLOs6n4cuID/yELax06eJ4/wB03+pladw+JNg+ZFyu48HApSi+o4yT2NkWDbtzOzHr14zWR4kczwC1hU7pCFGK8i0/9ofWr/4a+Cb+PTbK78YeK7q4tLa0jE0dtCI5JEa4fAdikeIi67gSGYggA47vwzpPjh9R0y71bUPD91E4/wBNtrSwniaMGNv9TI0zBsSbB8yLlSx4OBSdNx3LjUT2OhTTotOsHjABRIiOBgE/5zXmXwNZb2b4ZSIrF9c+MWq6gcn7yW9iyj6gYx716z4wvItA8KarfSHCWtnNcuR2CoTXlX7PsMHh2f8AZdimXy7fQvDHiXxpfytwEE/mrEx+gJH0Ar38mg1CpJ+SPEzX4Yr1/I4qawbWP2edPgR3P2z4feJo1GMENputxXkY6dlkcA/411vxV0rR/FXxl8a65e6H4a1C31HQtF8TPdeLNOaTS9Oee28l3uLm1kW6hU+TGAUWSMn/AFgX5ZF5DRb4W/7O/gezeMxNafCfxhqM8mTz9rvI40JHuwH51t67ImnfHXwTLFNpVvrNl8OfDj2U82qGy1ZZRGwI01H/AHFzOVYj7Pcfu5Adh+/g/TLqeGtbHYaH4w8NeOvBsHhmR/DfjAiFjFD4L1J/EhHl4KLNpWoLFdypGM7ZbaSSdBkK8aKoHBXvxb8G6vrsnhzxVrFvb6lCDEIvGq30NrMqlT/o+qzQ/bbdgF4h1CC4jBAVZD8pHoEnifxz8Q7e80nWNP8AjT4zsZn3GPWPhdpEGlKFOTujcxuxxj5o5I5O6uDVr/hJ/H3huwkTRtU+M9zZtcSJPb6Ro9r4ys1kG3MDC9C3tmyDANvcruXszqVYzGcoSunr3CUISXK0npscrc/Buwcx3El34isoLhBNbGPwzda/DNEejxXumpcwypkMASY3O0kxICuYf+FOaT/0GfEf/htte/8AkKr+lw6np0c/2Ox8QzmeZ7iee/8A2flE8srHLO5tjEjE8cldx7k8Vc+2eIP+gbqv/iP9z/8AHq7/AK9iP5jj+qUez+8+Y/FUOoeP0uNeb+3PFmjq2LXxN4r8TLHf21kxybe4VnIJQmX7mT8wOOqjy3xD46u5pbjSrFrP+yZg0X2ZNOjRI13Z3x5XepPqTnrnkmvT5NMsPBmhBL/QvCGq6rLcukXinQNWGp6lGqrllhtVk2FuHAuHUhMDcPlFeL6xZf6LHNEZFuVwsgmA2AdB82eSe/TkmuGo5JJxPRaT3MXVVWxCzhjvypAHGfSsuLUbi81i6v8AzB5hBdyq4ya6q4086rbzsGUvDEZHUHIOMDjH1rkLuCXSb4tIhjU4ZT6jg/4VzApOXusdNZXdrdRyXZKGU7yjEFwD3Ydqu6raSi0t5Ypkljf7wUbSp96o6fcLNf75d00jHcXJ5rr9c83UIoZRbhVwMKvQDHU0pSkovU3cVLc4620aXVDJFZI1xKQPkU+/PWvpf4UfCLWfHNpZi50qDRvD8rxTXjy3HnTX0G7cI4wgG0FkAYkgjII6EHz/AOFPhm61G8bTNOgX7RqjR2f28rkWxZwQM9AzbdoB6k4r7/8ABng+y0TQ7DS1UBbWJI4h3G0D+Ywfzrw8bVl03PToUvM8ub4OX3irxD8T7fVLc2uk+IYbBLG8yGG+OEjfsVg3ySBThsBsdxmtXXE+NWs+Cz4NGgW6arJ5EJ8ZaXra20YAkRmk8raso+UFX2gZO4qpBC17nZac6ncyqjgksMZXp1z6nFbFpagEAjB9K8Rzcd1c9DkVrXPmfxT8OfEtv8XvGWuH4U2XjvTdUNl9knvr20h8jyrcI+FlDEZbg8D7g68V0Gq/CO7+JPxOXUvE/h6ODSbvwb/Z8xeWCd7G+eYsVjJB/eIrtiULj0POK+hXRUAO3PNRJbi4YkKAe5ArJVZPb0OqNNSV2fPWi/DPx3rPwo0Xw9qljbWPijwbqtrd6PqFzdI2n6gsEhEZYRAyKoiJXaVVjiMlslwvdeGfGnxA1vW0ttd+HsPhrTjGzveya7Ddnjoixxpkkn3AABOc4B9IYgMyk/cGCT61FcbWZQer/dolVvuhOHLazPmfwr8FvFVj8KfAn2RbPR/Hnhm6uZoV1FvOt2imlk82FzGWGHjZDuALDbgFSSR6f4F8QeP9W1WFda8E2PhiyjfNxLcawl3NNGY5MLCkS4Uh/LyXYfLkAEnK+ghMO8SDcwGTtqxJaKiZcks5wB1JqJVm73QRprozyL9qHW30X4Ka+ICWv9SVNMghH/LR53EWPf5WY4HPFcj8Qp4PB/8Awvq6VpVg+G3w20v4c20u5thuL1VSZlHGDvcj14z6V3Hj/SG8V/Hv4LeFCym3Otv4hu1POyCxRpSGGDwcOPw968z8PadJ8WPBHhO3lSYy/Gr4t3OuvHJ8udHtGPmA5zwnp0G0D3r7LKqfLhbveTufO5jPmrcvZD/i1pbaJ4R+JugQB3uvDvgLwn4EgCRkhru7uEuJ0HBwzEc/z4rW+Is5k/au+KOlW/iObRtK0rS9M0J9Nj8Ev4jS8tI7SN3il2KWt4QWJaRWV/mBU5TNT6Zfn4m6v4PuSTdt8SvjfPrkMp436Vpa7Ixj0Ax26ZqHwpZ+JvHnjn4oeJ/D9n8RNSt9X8aajIr+EfE9toMMsUbtHF5bS/PdzBEysSnYFwCckV7UZfF6HjNWsW9Y+F9/43sIxf8Aw8+KPxHsWiW5S48c/EZF8L2qbcpcxXMLB5UC4ODhsdQGzVqz0ewuxLLoR0KW9tkhtWl+HXxTZr+xTKpFFFfsAwBYbUtr3fEW+WKSIlY3yYPhfB8Qy9zp3wMtfjDcW9xIL9ofHEvh9ra5P3v7S0iTAtrjOTIYyEkYM64DCqJ8VaH4F1a3sPGXjH4K6Bc/Nbp4J8N+EG1C1tlwRKlzqFujvGxX5XEgmjbnfGyhhWHLzo1u/mdwvw18fy5M/hz9pXUnBI8+b4j2KtjsPlkAP1xzS/8ACsPHP/Qm/tIf+HJs/wD47Xnh+FvwxnCu3wv+E+tzMA8l7pfxcn0aFy3zDFpKzGL5WU4DMpzlSQRSf8Kn+GP/AERj4cf+H3NUTz+Y/9k="
  null
  null
  null
]
8.73 ms
(6.58%)
2
"COMMIT"
Parameters:
[]
6.70 ms
(5.05%)
1
SELECT n0_.id AS id_0, n0_.valor AS valor_1, n0_.nivel_localizacion AS nivel_localizacion_2, n0_.padre AS padre_3 FROM nmcl_dominio_localizacion n0_ LEFT JOIN nmcl_nivel_localizacion n1_ ON n0_.nivel_localizacion = n1_.id LEFT JOIN nmcl_localizacion n2_ ON n1_.localizacion = n2_.id LEFT JOIN nmcl_dominio_localizacion n3_ ON n0_.padre = n3_.id WHERE n2_.id = 1 AND n1_.nivel = 4 AND UPPER(n0_.valor) = ? AND UPPER(n3_.valor) = ?
Parameters:
[
  "COLIMES"
  "COLIMES"
]
3.78 ms
(2.85%)
2
SELECT p0_.id AS id_0, p0_.anno AS anno_1, p0_.llamada AS llamada_2, p0_.fecha_inicio_registro AS fecha_inicio_registro_3, p0_.fecha_fin_registro AS fecha_fin_registro_4, p0_.fecha_acuartelamiento AS fecha_acuartelamiento_5, p0_.fecha_fin_dias AS fecha_fin_dias_6, p0_.hora_inicio_acuartelamiento AS hora_inicio_acuartelamiento_7, p0_.hora_fin_acuartelamiento AS hora_fin_acuartelamiento_8, p0_.fecha_fin_dias_posteriores AS fecha_fin_dias_posteriores_9, p0_.minutos_test AS minutos_test_10, p0_.bajas_permitidas AS bajas_permitidas_11, p0_.activo AS activo_12, p0_.cant_cursos AS cant_cursos_13, p0_.titulo_reporte_uniforme AS titulo_reporte_uniforme_14, p0_.titulo_reporte_jockey AS titulo_reporte_jockey_15, p0_.titulo_reporte_calzado AS titulo_reporte_calzado_16, p0_.titulo_reporte_camiseta AS titulo_reporte_camiseta_17, p0_.titulo_reporte_estudios AS titulo_reporte_estudios_18, p0_.foto_uniforme AS foto_uniforme_19, p0_.foto_jockey AS foto_jockey_20, p0_.foto_calzado AS foto_calzado_21, p0_.foto_camiseta AS foto_camiseta_22 FROM proceso_reclutamiento p0_ WHERE p0_.activo = true
Parameters:
[]
1.63 ms
(1.23%)
1
INSERT INTO recluta_proceso (id, fecha_registro, pais_residencia, calle_principal_residencia, calle_secundaria_residencia, num_casa, referencias, geometria, fecha_consulta_antecedentes, resultados_antecedentes, fecha_consulta_estudios, resultados_estudios, idoneo, fecha_resultado, fecha_asignacion, causa_rechazo, observaciones, volver_presentarse, intentos, fecha_intento1, fecha_intento2, fecha_intento3, turno, fecha_baja, certificado_vacunacion_ok, talla_uniforme, talla_jockey, talla_calzado, talla_camiseta, estudio, proceso, base_movilizacion, centro_movilizacion, unidad_militar, recluta, localizacion_residencia, unidad_militar_inicial) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
Parameters:
[
  230650
  "2024-11-14 08:59:32"
  null
  null
  null
  null
  null
  null
  null
  null
  null
  null
  0
  "2024-11-14 08:59:32"
  null
  "EDAD"
  null
  "PROXIMO"
  null
  null
  null
  null
  null
  null
  null
  null
  null
  null
  null
  null
  47
  null
  null
  null
  190228
  null
  null
]
1.42 ms
(1.07%)
1
SELECT t0.id AS id_1, t0.fecha_registro AS fecha_registro_2, t0.pais_residencia AS pais_residencia_3, t0.calle_principal_residencia AS calle_principal_residencia_4, t0.calle_secundaria_residencia AS calle_secundaria_residencia_5, t0.num_casa AS num_casa_6, t0.referencias AS referencias_7, t0.geometria AS geometria_8, t0.fecha_consulta_antecedentes AS fecha_consulta_antecedentes_9, t0.resultados_antecedentes AS resultados_antecedentes_10, t0.fecha_consulta_estudios AS fecha_consulta_estudios_11, t0.resultados_estudios AS resultados_estudios_12, t0.idoneo AS idoneo_13, t0.fecha_resultado AS fecha_resultado_14, t0.fecha_asignacion AS fecha_asignacion_15, t0.causa_rechazo AS causa_rechazo_16, t0.observaciones AS observaciones_17, t0.volver_presentarse AS volver_presentarse_18, t0.intentos AS intentos_19, t0.fecha_intento1 AS fecha_intento1_20, t0.fecha_intento2 AS fecha_intento2_21, t0.fecha_intento3 AS fecha_intento3_22, t0.turno AS turno_23, t0.fecha_baja AS fecha_baja_24, t0.certificado_vacunacion_ok AS certificado_vacunacion_ok_25, t0.talla_uniforme AS talla_uniforme_26, t0.talla_jockey AS talla_jockey_27, t0.talla_calzado AS talla_calzado_28, t0.talla_camiseta AS talla_camiseta_29, t0.estudio AS estudio_30, t0.proceso AS proceso_31, t0.base_movilizacion AS base_movilizacion_32, t0.centro_movilizacion AS centro_movilizacion_33, t0.unidad_militar AS unidad_militar_34, t0.recluta AS recluta_35, t0.localizacion_residencia AS localizacion_residencia_36, t0.unidad_militar_inicial AS unidad_militar_inicial_37 FROM recluta_proceso t0 WHERE t0.recluta = ? AND t0.proceso = ? LIMIT 1
Parameters:
[
  190228
  47
]
1.19 ms
(0.90%)
2
"START TRANSACTION"
Parameters:
[]
0.91 ms
(0.69%)
1
SELECT NEXTVAL('recluta_id_seq')
Parameters:
[]
0.59 ms
(0.44%)
1
SELECT NEXTVAL('recluta_proceso_id_seq')
Parameters:
[]

Database Connections

Name Service
default doctrine.dbal.default_connection

Entity Managers

Name Service
default doctrine.orm.default_entity_manager

Second Level Cache

Second Level Cache is not enabled.

Entities Mapping

Class Mapping errors
App\Entity\ProcesoReclutamiento No errors.
App\Entity\Adjunto No errors.
App\Entity\Curso No errors.
App\Entity\Recluta No errors.
App\Entity\NmclDominioLocalizacion No errors.
App\Entity\NmclNivelLocalizacion No errors.
App\Entity\NmclLocalizacion No errors.
App\Entity\ReclutaProceso No errors.
App\Entity\BaseMovilizacion No errors.
App\Entity\CentroMovilizacion No errors.
App\Entity\UnidadMilitar No errors.
App\Entity\CentroInstruccion No errors.
App\Entity\SeguridadUsuario No errors.
App\Entity\NmclCargo No errors.
App\Entity\NmclGrado No errors.